STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1950-011

On a theorem in the theory of binary relations

J.F. Koksma en H.J.A. Duparc

1950

Koksma en H. J. A. Dupare Remarks

On a theorem in the theory of binary relations.

This paper was inspired by a theorem of Lazar) which we shall state below.

Let M be a set of positive measure. To every $x \in M$ we adjoin a set of elements $y \neq x$ of M which may have the cardinal number of the continuum. This meas that we define a function $y = \varphi(x)$ of $x \in M$, where $y \in M$, which may assume continuously many values for every x, whereas the equation $x = \varphi(x)$ cannot occur. If neither of the two equations $y = \varphi(x)$ and $x = \varphi(y)$ holds, the two elements x and y are called independent.

Let $\{\varphi(x)\}$ denote the set of values $\varphi(x)$ for a given x_i moreover that x is not a point of accumulation of $\{\varphi(x)\}$ and that $\{\varphi(x)\}$ is of measure zero.

Theorem. We can find a set of positive exterior measure of elements of M that any pair of its elements are independent.

<u>Proof.</u> As the set $\{\varphi(x)\}$ does not contain x and as x is no point of accomplation, its complement $C\{\varphi(x)\}$ with respect to M contains x and an interval I_x surrounding x. Now foregovery x let us choose in I_x a closed segment S(x) with rational endpoints. Hence all values of $\varphi(x)$ are situated outside S(x).

Now the segments S(x) form an enumerable system S_1 , S_2 , ... To ever S_n there belongs at least one $x \in M$, such that $S(x) = S_n$. Let N_n denote the set of all $x \in M$ with $S(x) = S_n$. We assert that there is at least one segment S_n for which N_n has positive exterior measure. For suppose that the every S_n the set N_n would be of measure zero. Then, as $M \subset N_1 + N_2 + \ldots$, the weal-known theorem that the sum of enumerably many sets of measure is a set of measure zero, we must conclude that M was a set of measure.

The elements $x \in \mathbb{N}_n$ at attachts independent as the adjoined tall belong to S_n ; they are evidently independent as the adjoined values are all outside the segment S_n .

Lazar's theorem states only that we can find a set with the power of the continuum under the same assumptions.

¹⁾ Compositio Mathematica 3 (1936), p. 304.

²⁾ Evidently Carar uses the roord condensation -point , where only a point of accumulation is meant.